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Abstract:  It is difficult to imagine what an animal as different from us as the octopus 
‘thinks’, but we can make some progress. In the Umwelt or perceptual world of an 
octopus, what the lateralized monocular eyes perceive is not color but the plane of 
polarization of light. Information is processed by a bilateral brain but manipulation is 
done by a radially symmetrical set of eight arms. Octopuses do not self-monitor by 
vision. Their skin pattern system, used for excellent camouflage, is open loop. The 
output of the motor system of the eight arms is organized at several levels — brain, 
intrabrachial commissure and local brachial ganglia. Octopuses may be motivated by 
a combination of fear and exploration. Several actions — a head bob for motion 
parallax, a ‘Passing Cloud’ skin display to startle prey, and particularly exploration by 
their arms — demonstrate the presence of a controlling mind, motivated to gather 
information. Yet most octopuses are solitary and many are cannibalistic, so they must 
always be on guard, even against conspecifics. The actions of octopuses can be domain 
general, with flexible problem-solving strategies, enabling them to survive “by their 
wits” in a challenging and variable environment.  
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It is difficult to imagine the minds of other animals, as Nagel (1974) emphasized when 
discussing what it might be like to be a bat. This problem is larger when one thinks of the 
octopuses, with eight arms, a separate skin display system and 3/5 of their nervous system 
in the arms. Theorists have speculated about octopuses’ domain-general cognition (Vitti, 
2013), representation of the spatial world (Grasso, 2014), monitoring of self (Godfrey Smith, 
2016), and their putative lack of a single locus of consciousness (Carls-Diamante, 2017). Yet 
we do have enough information to evaluate how octopuses might have a unity behind the 
diversity when organizing their world. This target article adopts an ecological approach 
(Dukas, 1998) based on von Uexcull, von Uexcull & O’Neill’s (1934) principles of the Umwelt 
and the Wirkwelt, the individual’s perceptual and action worlds. I first describe octopuses’ 
sense of self and of the world around them; the functions of their skin patterning and arm 
motor control systems; and how octopuses may be guided by two motivational bases, 
exploration and fear. Based on the fact that they explore to acquire information, calculate 
what they can do with the world around them and use flexible problem-solving strategies 
when threatened by predators or conspecifics, I argue that octopuses have a mind. 
 
1. What is the world of the octopus like? 
 
1.a. What does an octopus know about itself? 
Understanding octopus cognition and self-awareness is complicated by the fact that 
octopuses do not have nervous systems as centralized as those of vertebrates (Mather & 
Dickel, 2017). While their brain-body ratio is higher than that of many vertebrates (Packard, 
1972), 3/5 of the neurons of octopuses are not in their brain but out in their arms, guiding 
complex actions of a muscular hydrostatic movement system (Kier & Smith, 1985). Although 
they have an excellent lens eye comparable to that of ‘higher’ vertebrates, vision does not 
dominate their perception as much as it does in humans. Their very sophisticated skin display 
system (Messenger, 2001) does not seem to have the self-monitoring that we expect from 
motor output.  

All of this leads to what we might call a different ‘way of being’ in the world. The 
cephalopod central brain, which is large even by vertebrate standards (Packard, 1972), has 
about 40 lobes. The vertical lobe can be considered to contain a true learning and memory 
system. Like the vertebrate brain, it is well-organized neurally (Hochner & Shomrat, 2014). 
The vertical lobe is not the site of storage of long-term memory, but instead an organizing 
area. Sensory input feeds into it in parallel; it modulates short-term memory and encodes 
long-term memory. Both of these memory traces are stored outside the lobe, however, and 
actions are programmed in the sub-esophageal areas of the brain. Shigeno, Andrews, Ponte 
& Fiorito (2018) have discussed cephalopod brain areas that would parallel the functional 
allocation seen in vertebrates. With this control circuitry, octopuses can perform the 
operations suggested by Emery & Clayton (2004) as indicative of cognitive ability in 
mammals and birds — flexibility, causal reasoning, prospection and imagination (Mather & 
Dickel, 2017). Alongside this cognitive circuitry, however, there are different nervous system 
areas that must channel and limit octopus cognition.  
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Figure 1: This picture of an octopus shows the eight flexible arms spread around it with the head, including the 
lateral eye, showing brown above, and the inflated mantle to its posterior. This shows it to be a Cephalopod, or 
‘head-foot’, though they are not feet, but arms. (Photo by Craig Foster) 

 

 
 

https://seachangeproject.com/
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1.a.1. Skin pattern production. Octopuses have a complex appearance system, not pigment 
cells but a whole system. Chromatophores are elastic sacs, producing yellow, red or brown 
color when they are pulled out by muscles whose motor neurons are in the chromatophore 
lobes of the brain, with their axons spread across all the areas of the skin in a spatial array 
(Messenger, 2001). When the chromatophores are contracted, reflective cells return the 
wavelengths of light that are present in the environment, giving good camouflage at low light 
levels (Buresch et al., 2015). The chromatophore patterns generate excellent colored 
camouflage (see Chiao, Chubb & Hanlon, 2015, for cuttlefish), despite the fact that 
cephalopods are color blind (Figure 1). These patterns do not stand alone, as the skin surface 
can be raised in papillae which give it texture (Gonzales-Bellido, Scaros, Hanlon & Wardill, 
2018); this is well-studied in cuttlefish but likewise present in octopuses. Postures, 
particularly of the arms but also of the body, imitate features of the environment or even 
other animals, further contributing to camouflage. Josef, Amodio, Fiorito & Shashar (2012) 
used image analysis algorithms and found that this octopus camouflage was not due to a 
general background matching but rather imitation of particular key features in the immediate 
surroundings. 

The skin display system is mostly used as camouflage in octopuses, but it is also used in 
other situations, as likewise observed in cuttlefish and squid (Hanlon & Messenger, 2018). 
Although the semi-automatic camouflage function is better known, cephalopods use their 
skin for several communicative purposes. For example, several species of octopus and 
cuttlefish use a display called ‘Passing Cloud’ expanding and contracting chromatophores so 
that a cloud-shaped figure appears to move along the skin surface in an anterior direction 
(Mather & Mather, 2004). This apparent movement, aimed at startling potential prey, allows 
the octopus to ‘move’ while remaining stationary, so that the prey’s image on the octopus’s 
retina does not slip. Another communicative pattern is the black and white contrasting startle 
display produced in response to a threat from a predator. In cuttlefish and squid, this takes 
the form of eye spots (Langridge, Broom & Osorio, 2007; Mather, 2010); in octopuses, it takes 
the form of web spread with contrasting dark around the eyes (Mather & Alupay, 2016).  

Although few octopus species use the skin system during courtship, Abdopus aculeatus 
males form black and white stripes on their skin, displaying them to rival males and guarded 
females (Huffard, Caldwell & Boneka, 2008, 2010). Sexual skin displays are much more 
developed in cuttlefish (Hall & Hanlon, 2002) and squid (Mather, 2016). Yet this complicated 
and adaptive system seems to be open loop and again not centrally monitored. Octopuses 
probably need the powerful deception of camouflage because evolutionarily they have lost 
their protective shell, protected particularly from the visually dominant bony fishes only by 
their appearance and behavior (Packard, 1972).  

The circuitry starts with high acuity vision, but with only one photopigment in the eyes, 
octopuses can only distinguish light’s plane of polarization, not its wavelength. Stimulation 
of the massive optic lobe, immediately connected to the eyes, reveals that skin output 
patterns are produced there (Liu & Chiao, 2017), but without the somatotopic organization 
found in vertebrates. Godfrey-Smith (2016) has suggested that cephalopod brains lack 
reafference copy of their actions (the internal feedback loops duplicating action commands 
that help vertebrate brains monitor their motor output). This is not quite correct for the skin 
patterns, as the commands pass from the optic to the lateral basal lobes directly and also via 
the peduncle lobes, both with feedback loops (Williamson & Chrachri, 2004). Still, the motor 
neurons of the chromatophore lobes generate no feedback, so there is no internal copy of the 

https://animalstudiesrepository.org/cgi/viewcontent.cgi?filename=0&article=1370&context=animsent&type=additional
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final output. Despite this, cuttlefish camouflage closely matches the color sensitivity of 
vertebrate receivers’ eyes (Chiao, Wickiser, Allen, Genter & Hanlon, 2011; see Figure 2).  

Figure 2: This octopus is producing excellent camouflage tuned to vertebrate eyes. (Photo by Craig Foster) 

 
1.a.2. Arm movement. The central-peripheral balance of control is complex for the 
movement of the eight octopus arms. Three fifths of octopus neurons are in the arms, but it 
is not clear to what extent arm actions are centrally monitored. One or two rows of adhesive 
suckers line the ventral surface of octopus arms; these have many tactile and chemical 
receptors in addition to being powerful attachment structures (Kier & Smith, 2002). A nerve 
cord runs along each arm as a sequence of brachial ganglia (see Grasso, 2014, Figure 5.2), 
with neighboring ones serially connected. A sucker ganglion above each sucker is connected 
only to its own brachial ganglion. Each arm is a muscular hydrostat movement system, with 
an almost unlimited number of degrees of freedom for action (Kier & Smith, 1985). For any 
movement, some of the muscles of the arm stiffen to make support structures and others 
articulate against them to cause motion; this combination may be too complex for central 
programming and monitoring. At the base of the brachial nerve cords, an interbrachial 
commissure links all the cords, but unfortunately, its function has been little investigated (see 
ten Cate, 1928, see Figure 3). 

What representation of arm position and sensory feedback is present in the brain?  
Zullo, Sumbre, Agnisola, Flash & Hochner (2009) stimulated the control area of the basal 
lobes of Octopus vulgaris and were not able to find the expected somatotopic representation 
of the motoneurons. From this they concluded that the octopus brain was not able to monitor 
the position and state of the arm and that the lower level control and monitoring of arm 
actions was allocated to the chains of ganglia. Since a somatotopic organization was not found 
in the optic lobe either (Liu & Chiao, 2017), there may simply be a ‘mosaic’ organization in 
both. Grasso (2014) carried the assumption of levels of control even further. He concluded 

https://seachangeproject.com/
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that the octopus had two brains: the brachial plexus had the capacity for somewhat 
autonomous behavior and it formed a representation as well as a control system for the arms. 
On this basis, Carls-Diamante (2017) speculated that octopuses might have two loci of 
consciousness. The conclusion from Grasso’s (2014) reconstruction was that the brain gave 
only general commands to the arms and that it “did not know what the arms were doing”. Yet 
the vertebrate movement system, with which it is inevitably contrasted, is not rigidly 
controlled and monitored centrally either. Initiation of locomotion is central (Jordan, 
Brownstone & Noga, 1998), but the pattern output circuitry is in the spinal cord (McCrea, 
2001) aided by the reflex responsiveness of the muscles. A similar central-peripheral 
combination may also be present in the octopus. 

On the basis of this physical arrangement, Hochner (2012) concluded that the many 
degrees of freedom were constrained to simpler stereotyped arm movements called motor 
primitives, especially bend propagation along the arm and formation of pseudo-joints as 
places of articulation. These actions would be generated by the interaction of the brachial 
ganglia, combined as units and unmonitored by the brain. However, the testing situation for 
the assessment of these basic actions was itself fairly stereotyped. When Richter, Hochner & 
Kuba (2015) challenged octopuses to extend an arm through a hole in a perspex panel, they 
did not use actions based on these motor primitives. They either used a straight extension 
through the hole or extended the arm partly through the hole and waved the distal portion 
through the water. Not only were arm actions variable, but octopuses could also monitor 
them centrally to some extent. O. vulgaris learned to direct an arm in a maze on the basis of 
visual cues (Gutnick, Byrne, Hochner & Kuba, 2011), or kinesthetic or tactile ones (Kuba, 
personal communication). Visual information was not available for actions of the octopus 
mouth area; non-visual kinesthetic cues from the arms were used by octopuses to orient 
clams under the web in different positions for pulling open or penetrating their shell, using 
different techniques (Anderson & Mather, 2007, for Enteroctopus dofleini). Octopuses also 
self-monitor arms in some situations. When an arm is damaged, octopuses tend the wound 
(Alupay, Hadjilosolomou & Crook 2014), moving the affected area to the mouth and 
evaluating the damage, protecting it and running the suckers of other arms along it, actions 
which must have been centrally coordinated.  

Perhaps cephalopod self-monitoring is not mainly visual, as chemical cues from the skin 
of an octopus’s own arm partially block self-grasping by the suckers (Nesher, Levy, Grasso & 
Hochner, 2014). Octopuses did not succeed in recognizing themselves in even a partial test 
of Gallup’s (1995) mirror self-recognition task (Mather, Carere, Fiorito & Anderson, 2018). O. 
vulgaris perceived this visual feedback as an anomalous situation and not a view of a 
conspecific; they made more mantle-up challenge displays to conspecifics and more Passing 
Cloud displays to the mirror. Many other species, such as grey parrots (Pepperberg, Garcia, 
Jackson & Marconi, 1995) also fail to ‘pass’ the mirror test and yet can use visual information 
to direct themselves in space. Similarly, octopuses can visually distinguish between two 
humans (Anderson, Mather, Monette & Zimsen, 2010). Their use of vision might be other-
directed rather than self-directed. 
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Figure 3a: This diagram shows routes of distributed motor output from the octopus brain toward, along, and 
between the arms, as represented in some of the eight arms. BN stands for brachial nerve (of each arm), and 
IBC stands for the interbrachial commissure between arms.  
 

 
Figure 3b: This diagram shows the circuitry of the routes of control of a few of the neural chains of ganglia 
running along the octopus arm, superimposed on a side-view of the arm itself. BG stands for brachial ganglion, 
SG stands for sucker ganglion, and S stands for the sucker. 

 
Octopuses’ arm actions are often part of coordinated activities with other parts of the body. 
If one of these arms has been lost and regenerated but is too short enough to contact a target 
effectively, the animal does not attempt to use it; its place in the ‘slapping’ sequence (Mather, 
1992) toward a threatening fish is taken by a more ventral arm (personal observation of 
Abdopus sp.). Arm positions supplement the skin color and papillae erection (Gonzales-
Bellido et al., 2018) that accomplish camouflage by masquerade and mimicry (again studied 
in detail in cuttlefish, Chiao et al., 2015). A coordinated spread-arm position and web 
extension (Mather & Alupay, 2016) produce the enveloping Web-Over posture forming a sac 
that covers a portion of the landscape. Within this umbrella, octopuses search with distal 
arms for the small prey items they have trapped. Yet arm cooperation is variable, as 
octopuses sometimes use several arms independently for chemotactile search in several 
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unseen locations (Mather, 1991a). They can also extend an arm to block one side entrance to 
a burrow before entering a main one to capture hidden prey (personal observation, Abdopus 
sp.), or coordinate the arms to dig in sand for bivalve prey.  
 This variable allocation echoes Godfrey-Smith’s (2016) suggestion that octopuses 
have a mixture of loci of control — sometimes the brain, sometimes along the interbrachial 
commissure and sometimes through coordination of local brachial ganglia. Japyassu & Laland 
(2017) describe this strategy as “outsourcing of processing power from the centre to the 
periphery of the nervous system” (p. 387). It is stimulated by the complexity of the muscular 
hydrostat movement system (Kier & Smith, 1985). The prey-finding strategies of 
cephalopods are always flexible (see Hanlon & Messenger, 1996) and adapted to the species 
and situation. Perhaps guided by chemical cues, octopuses can extend an arm along a crevice 
or use water jets from the funnel to ‘blow’ sand off a concealed crab. Finally, casual 
observations of all three cephalopod groups have yielded reports that they can extend one 
arm or a tentacle, retract the chromatophores at the tip so it becomes white, and ‘wiggle’ it 
as a lure for attracting curious mobile prey. This is an obvious example of flexibility and 
planning in predation, using body positions, chromatophore control and arm actions 
together. Arm actions must be partly monitored at the local level, yet some are centrally 
planned and coordinated. 
 Regardless of the locus of control and monitoring, the manipulative ability of eight 

sucker-lined arms must have contributed to the development of octopus intelligence. At a 

local level, suckers can grasp items or the substrate with a strong grip (Kier & Smith, 2002). 

Early casual studies have reported that O. vulgaris had a pulling force of ten times its weight 

(Dilly, Nixon & Packard, 1964). Suckers can also fold toward the center to make a pincer grasp 

so precise that an octopus can use fine manipulation in situations not found in nature, such 

as untying knots in surgical silk, pulling apart a floating thermometer and taking lids off jars 

(Fiorito, von Planta & Scotto, 1990; Anderson & Mather, 2010). Female octopuses use the 

stalks of the proximal suckers as bobbins to weave together the stems of eggs and form them 

into large interwoven strings, which are then suspended from the upper area of the shelter. 

Grasso (2008) found that a few sucker-arm segments of an octopus attempting to remove a 

cap from a base could exert different but coordinated local actions, grasping several areas 

and extending small arm segments.  

 The octopus has two different distributions of motor control, bilateral for the brain 

and radial for the arms (see Figure 4).  Part of the problem in understanding octopus 

movement control is that we do not know how a radially organized output system is 

controlled; another part is that we do not understand how the system responds to this 

bilateral-radial mixture.  Octopuses make movement ‘decisions’, selecting specific arms for 

particular actions or combining them as different components of coordinated ones. Arms are 

equipotential in that each one in this radial array can perform many different actions (Mather, 

1998), but specific arms are more likely to do different behaviours, probably in response to 

bilateral output. When crawling, octopuses allocate their four posterior arms to pushing 

along the substrate and their four anterior ones to exploring the area ahead. However, they 

do not always move forward, so the arms allocated for crawling might be the left four, for 

instance, if the animal is moving rightward, a clear flexibility of organization around the radial 

array. Carls-Diamante (2017) has suggested that the motor centers of the brain might thus 
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only need to activate a general motor program setting direction; the mechanical properties 

of the arms then carry out the flexible local details. According to ten Cate (1928), however, 

coordination around the commissure is more likely.  

Figure 4: This octopus is doing a display called Half and Half, in which chromatophores are expanded over all 
of one side of the animal (dark) and contracted (pale) on the other side. It has no known function, but shows us 
how the octopus is bilaterally symmetrical. (Photo by Craig Foster) 
 

Arms 1-left and 1-right (and secondarily, 2-left and 2-right) are more likely to be used for 
exploration. Byrne, Kuba, Meisel, Greibel & Mather (2006a) found that individual O. vulgaris 
each has one of these as a ‘preferred’ arm for single-arm exploration, probably in response to 
eye-brain control. When a second arm is recruited to assist with the action, it is often the 
‘next-door’ one, perhaps as a result of commands extending around the interbrachial 
commissure. On the other hand, octopus arm use is heavily influenced by allocation of 
attention to one of the lateralized eyes (Byrne, Kuba, Meisel, Greibel & Mather, 2006b), a 
central influence. We might hope to compare such coordination to that of the radial 
echinoderms, who have pentameral symmetry. However, they have underlying bilateral 
tendencies (Ji, Wu, Zhao & Lv, 2012), based on the larval bilaterality, so perhaps they also use 
a mixture of the two types of control.  
 The flexibility of arm use not only extends to choices, but different arms perform 
different actions in coordinated behavior, not as stereotyped motor primitive units. The arm 
‘slap’ at a scavenging fish (Mather, 1992) involves mostly the dorsal four arms, with the 
posterior four holding on to the substrate to brace the animal. An octopus unscrewing a lid 
from a jar can use several arms to hold the jar (Anderson & Mather, 2010), while one or two 
turn the lid. Different individuals perform this behavior using different arms and actions, 
suggesting that action choices are far from being an automatic combination of stereotyped 
units. In the difficult task of reaching through a small hole, individual O. vulgaris choose one 
of two different movement strategies (Richter et al., 2015), again suggesting that these 

https://seachangeproject.com/
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actions are not stereotyped across individuals. Grasso (2008) also found that different arms 
were allocated to different parts of the coordinated actions. Interestingly, gait analysis of 
octopus 'walking' (Levy, Flash & Hochner, 2015) turned up no pattern at all in arm use 
sequences, quite unlike those in vertebrates and arthropods. How can you have order without 
predictability? Perhaps it involved feedback and ‘decisions’ communicated around the 
commissure (ten Cate, 1928). The modal direction relative to straight ahead of octopuses 
when walking was 45 degrees to one side or the other, so the monocular octopus was 
choosing visual movement guidance by one eye and proceeding under its influence. In a 
different context, the small Abdopus sometimes combines two differently motivated response 
sets when walking in a threatening open-area situation. They hold several arms in 
Camouflaging postures and push with only some of them, usually the posterior pair (Huffard, 
2006). Choosing and coordinating arm actions must be under the command of a central 
controller, yet with the use of peripheral subsystems. 

An intriguing set of observations from the field suggests that octopuses not only 
manipulate their environment: they also anticipate what is needed for the future. Several 
individuals of Amphioctopus marginatus have been observed to dig separated coconut halves 
out of the sandy mud and carry them, stacked under their arms, across the substrate (Finn, 
Tregenza & Norman, 2009). After travel of up to 20 m, they rearrange the halves as shelter 
and hide inside them, holding them together from the inside. Such planning is probably 
common in octopuses but not always easy to recognize. 

 
1.b. How do octopuses extract information about the environment? 
Examining how an octopus ‘thinks’ demands that we use the approach of von Uexcull et al. 
(1934) and evaluate their Umwelt, or sensory and perceptual world. Octopuses live in water, 
which transmits mechanical and chemical information very effectively, although little 
research has been done on these areas of sensory perception and communication in 
cephalopods. The ocean is also dominated by the bony fishes. As predators, prey and 
companions (Packard, 1972), they form an important part of the octopus’s environment. Fish 
provide what Gibson (1979) would call affordances, or clues in the environment that ‘direct’ 
particular behaviours (see Withagen, de Poel, Araujo & Pepping, 2012). Hochner (2012) 
advanced the idea of environmental specification as ‘embodied cognition’, although his 
exposition did not move beyond the arm control system; see Japyassu & Laland (2017) for 
the ‘embodiment’ of the web-building spiders in their webs. However, Hochner (2012) 
pointed out the necessity of understanding the mechanical and sensory systems as well as 
how they interact with the specific environment. These principles are also discussed by 
Godfrey-Smith (2016). We cannot evaluate how octopuses think without taking their 
ecological context into consideration. For this we need both the control of laboratory 
experiments and the ecological validity of field observations (Mather & Kuba, 2018). 

One notable area in which to use the Umwelt approach is the evaluation of visual 
information by octopuses (see Gleadall & Shashar, 2004). The similarity of cephalopod and 
mammalian eyes is often held up as an excellent example of convergent evolution, yet there 
are also some important differences. With only one photopigment, nearly all cephalopods are 
color-blind, even though their skin camouflage matches the perceptual ability of the 
vertebrate fishes (Chiao et al., 2011). Since color information is not available to the 
cephalopods, camouflage programming must have been shaped by selection and is not 
available for assessment by the octopus itself.  In contrast, cephalopods can discriminate the 
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plane of polarization of light (Mäthger, Shashar & Hanlon, 2009) and use it to navigate 
(Cartron, Darmaillacq, Jozet-Alves, Shashar & Dickel, 2012) and to aid in viewing in turbid 
water (Cartron et al., 2013). Water distorts light polarization, and there is some polarization 
reflectance in selected cephalopod skin areas. This dimension too is available for the animals 
to use for communication. Water also filters out most of the red end of the visual spectrum of 
light, so as depth increases this restricted spectral range, color information becomes less 
useful. The plane of polarization of light remains informative, however, and sensitivity to this 
dimension also ‘breaks’ the reflective camouflage of fish scales and transparent animals. 
Polarization sensitivity is only beginning to be investigated (Mäthger et al., 2009). The same 
light may actually create a different sensory world for cephalopods and their fish 
competitors.  

Extensive study of the visual encoding cues and neural organization of O. vulgaris 
(although tested in an ecologically inappropriate context) has provided a clear idea of visual 
shape discrimination capacity, presumably under some sort of central control (Sutherland, 
1957; Wells, 1978). In small laboratory tanks at Naples, octopuses learned to come out of 
their shelters and were rewarded for touching one shape and given a small shock for touching 
the other. Researchers first found that vertical and horizontal extent was an important cue 
for figure discrimination. However, octopuses learned subsequent contrasts based on general 
shape (circles and squares), size, edge-area ratio and even directionality of reduplicated 
patterns. The octopuses did not have a simple shape assessment system; rather they learned 
to use the cues that were relevant for a particular comparison, for which they were described 
as a ‘learning machine’ by Wells (1978). Some cues about the octopuses’ learning system 
came from the fact that they could learn a very difficult discrimination if they were given it in 
a sequence of finer and finer differences. With two relevant differences between shapes, they 
learned faster than with only one; but some individuals used one of them and some the other. 
More recently, researchers have found that cephalopods succeed in a wide array of learning 
contexts, including reversal (Bublitz, Weinhold, Strobel, Deinhardt & Hanke, 2017) and 
episodic-like memory (Jozet-Alves, Bertin & Clayton, 2013) tasks. Reviewing the many 
paradigms in which octopuses have succeeded in learning, Zarella, Ponte, Baldascino & 
Fiorito (2015) described the octopus as a model of ‘biological plasticity’. 

 Monocular visual control through laterally placed eyes is another aspect of the 
octopus’s Umwelt. Using brain ablation and disconnection techniques, early authors were 
able to test how they used and stored visual information. Octopuses trained on a 
discrimination using only one eye were not immediately able to perform it when the stimulus 
was presented to the other eye, so initial storage was unilateral. By the next day, however, 
they were able to make the discrimination. So the information had been transferred to the 
other side of the brain, as also observed in birds (Clayton, 1993). If the commissure between 
the two brain halves was cut before training, the octopus was not able to transfer to the other 
side. This showed researchers a different kind of implementation for a bilateral brain. Human 
bilateral brains have extensive lateralization of function, and recent research has also found 
physical lateralization in cuttlefish brains (Schnell, Hanlon, Benkada & Jozet-Alves, 2016): 
One side is specialized in information used for predation and the other in vigilance; there are 
also sex differences in these capacities (Jozet-Alves, Moderan & Dickel, 2008). It may be a 
general principal that duplication of action in brain halves eventually results in lateral 
specialization. Squid (Mather, 2016a) and cuttlefish (Brown, Garwood & Williamson, 2012) 
can make one skin display pattern to one side and a different one to the other. This brings out 
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an obvious parallel with split-brained humans and suggests that Carls-Diamante (2017) may 
be right in speculating about divided consciousness in octopuses, but on the basis of the same 
brain duality as in other bilateral brains.  

The use of chemical information in most animals is regrettably understudied, and 
octopuses are not an exception. They have an olfactory organ whose structure has recently 
been carefully examined (Polese, Bertapelli & Di Cosmo, 2015); soon we will know more 
about its function. Field researchers suspect that male octopuses find females by following 
chemical cues, as visual displays are not common. Prey-finding is a two-step process (Mather, 
Leite, Anderson & Wood, 2014). Octopuses first orient visually to habitat where preferred 
prey are likely; they then locate hidden prey by chemotactile exploration with the arms and 
suckers. Chemical sensing is hence likely to be important at both the local and global levels. 
We know so much about the octopuses’ visual capacity because we find it easy to study, but 
it may not prove to be as important to the animals as we believe. 

Early researchers, because they did not really understand the octopuses’ Umwelt, made 
a mistaken assumption about their perceptual and cognitive abilities. They tested O. vulgaris 
for whole-body orientation in the world by presenting octopuses with a crab behind a 
window, then giving the animals access to this prey by a detour through a corridor next to it. 
The octopuses could not make this detour, so Wells (1978) concluded that they could not 
monitor their position in the environment — although he did report that Walker, Longo & 
Bitterman (1970) succeeded in teaching octopuses a T-maze task, and that they could follow 
one of the maze walls to the reward. Mather (1991a) tracked octopuses in the field, where 
they had acquired much more spatial information, moving out from their sheltered homes 
and returning to them. They could recall where they had hunted in previous days and used a 
win-switch foraging strategy to choose where to hunt among different locations. They could 
also return home after inadvertent displacements (Mather, 1991b), so they must have had 
some simple cognitive map, quite likely guided by visual cues in the environment. This ability 
was confirmed in the laboratory and extended to cuttlefish (Boal, Dunham, Williams & 
Hanlon, 2000).  

The use of past information to guide future actions is clearly holding information ‘in 
mind’. Constructing a cognitive map, while it might not be the same kind of map in mammals, 
birds, insects and cephalopods, is also indicative of mindfulness. Many mobile animals use 
different solutions to the problem of moving in space; Wiener et al. (2011) talk of different 
species’ use of a ‘navigational toolbox’. The use of vision in this ecologically valid situation 
has recently been much more extensively studied in cuttlefish (Jozet-Alves, Darmaillacq & 
Boal, 2014), who can use a combination of cue type, place and time in an episodic-like 
memory task (Jozet-Alvez et al., 2013). Such ‘maps’ may be much more widely present in 
animals. Spiders detour towards prey (Tarsitano, 2006), and foraging bees use exploration 
as a foundation for flower search (Lihoreau et al., 2012). Carruthers (2007) argues that these 
actions are evidence that they have a ‘mind’ (but see Collett, Chittka & Collett, 2013, for a 
description of possible combinations of modules).  
 
1.c. What do octopuses think about conspecifics? 
Octopuses are strongly influenced by predation pressure, and their distribution is dominated 
by the availability of suitable shelter. Aronson (1986) reported a high density of O. briareus 
in a lagoon where predatory fish had been excluded. Hartwick, Breen & Tulloch (1978) found 
that E. dofleini were limited by dens in a rocky area. Anderson (1997) found O. tetricus 
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specifically at reef edges with large numbers of small boulders. Such a pressure to find shelter 
is easier to discern when octopuses occupy sandy habitat. Mather (1982) found O. joubini to 
be limited by the presence of empty mollusk shells; Anderson, Hughes, Mather & Steele 
(1999) noted that O. rubescens's range was extended by the presence of discarded beer 
bottles; and Katsanevakis & Verriopoulos (2004) found that O. vulgaris used a variety of 
human trash for shelter. This is important because the crowding of animals in particular 
areas could be due to either sociality or aggregation.  

What is sociality? In its simplest form, it is attraction of animals to conspecifics, in 
contrast to attraction to special areas in the environment. But sociality should also include 
some cooperation and recognition of conspecifics or individuals. These were found to be 
largely absent in octopuses in a review by Boal (2006). Tricarico, Borrelli, Gherardi & Fiorito 
(2011) has reported simple habituation to well-known conspecifics in octopuses, and Fiorito 
& Scotto (1992) have reported observational learning in O. vulgaris from conspecifics, but 
this research has not been replicated in other laboratories. Boal (2006) noted that there is no 
indication of cooperative behavior in octopuses and that they are well-known to be cannibals 
(Ibanez & Keyl, 2010). Moynihan & Rodaniche (1982) believed that squid had ‘sentinels’ at 
the end of their linear groups to warn others of approaching predators, but Adamo & Weichelt 
(1999) found no evidence for this. 

It is difficult to evaluate the normal sociality of any animal group. Observations of 
octopuses in the laboratory are biased because the environment lacks adequate space; 
octopuses form a dominance hierarchy when thus crowded (see Mather, 1980, for O. joubini; 
Boyle, 1980, for O. vulgaris; and Cigliano, 1993, for O.bimaculoides). Yet field observations are 
difficult, uncontrolled and often lacking enough individuals to work past the octopus’s huge 
individual variation (Mather & Anderson, 1993; see Huffard et al., 2010, for a welcome 
exception). Octopuses are permanently one sex of two, have internal fertilization and are 
semelparous, maturing only at the end of the lifespan. In order to continue the species, a male 
and a female must mate. Negotiating this tricky compromise is difficult for solitary animals, 
as females can attack courting males (Hanlon & Forsythe, 2008). One can debate whether 
temporarily tolerating one another through this process is actually an indication of social 
sexuality.  

 The octopus’s excellent skin display system seems mostly ‘aimed’ at the eyes of fish 
rather than conspecifics. Still, a darkening of the skin with a Mantle-Up posture (Scheel, 
Godfrey-Smith & Lawrence, 2016) seems to be agonistic in several species; A. aculeatus males 
show a stripe display in both male-male and male-female encounters (Huffard et al., 2010). 
Male octopuses tend to be the active sex; and as they mature, males seek out less active 
females (see Mather, 1980, for O. joubini in the laboratory; personal observations of O. 
vulgaris and O. cyanea). They probe into the female’s mantle cavity to transfer 
spermatophores to them, perhaps attracted by chemical cues.  

Recently, Scheel et al. (2016) found O. tetricus gathered in a mound of scallop shells. 
They observed many interactions and suggested that we should no longer consider octopuses 
to be solitary animals.  However, the bulk of evidence, including their own study, still suggests 
that they are solitary. As in the laboratory, the crowded octopuses in the ‘Octopolis’ site 
formed something like a dominance hierarchy. Some exhibited the agonistic Mantle-Up 
posture, although the skin darkening during this display was only statistically different from 
its appearance at other times. This was perhaps a general arousal leading to more 
chromatophore muscle tension and not a stereotyped display. In addition, despite the 
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habituation that must have occurred, fully 72% of all octopus social ‘contacts’ were simple 
arm extensions without even touching the other octopus.  

 Abdopus is clearly the most social of this solitary group. Huffard et al. (2010) recorded 
29 male-male contests and 28 instances of mate guarding in A. aculeatus. There were no 
instances of female-female contact, but there were agonistic interactions between courting 
males and between males and females. Males used the stripe display during courtship and 
contests; the larger individual ‘won’ most contests. Because the ecology of A. aculeatus was 
not part of the study, we know nothing about whether octopuses were also crowded in that 
particular habitat. This species is definitely the most social octopus known, but its sociality 
was only seen in the reproductive context, not a situation in which much thought is likely to 
be involved. We need many more field observations before we can ascertain the extent of 
octopus sociality.  

It is easier to describe the behaviors of the animals as above than to theorize about the 
competencies and motivations underlying these behaviors on the assumption of a mind that 
is processing input and directing multilevel output. Yet with their self-knowledge, sensory 
and cognitive specialization and social organization, octopuses could also be seen as driven 
by a combination of curiosity and fear. The following is an attempt to infer their underlying 
motivation.  

 
2. What are the motivational bases of octopus behavior? 

2.a. Exploration: What might I do with this object?   
Exploration has not been well-studied (Renner, 1990) and even less so in the octopus, yet it 
can serve as an important example of planning and forethought. We tend to restrict 
experimental animals in the laboratory to simplistic situations with a food reward, assuming 
that we have thereby tapped into all that they can express. Exploration is not simple and there 
are costs to it, both as energy expended and in risk of predation, but these costs are probably 
balanced by learning for future situations (Inglis, Langton, Forkman & Lazarus, 2001).  
 Extrinsic exploration gains information for a specific context; intrinsic exploration 
does so in situations that have no obvious biological importance. Octopuses are physically 
well-equipped for exploration, with their eight sucker-laden arms, yet the motivational 
underpinning that drives such investigation is difficult to analyze. One way to look at the 
value of exploration is to use experimental data from formal studies of a highly exploratory 
New Zealand parrot species, the kea.  

Keas are described as “bold, curious and ingeniously destructive” (p. 296) — adjectives 
that have also been applied to octopuses. Their diet choice is very wide, and they live in a 
variable and complex environment (Huber & Gajdon, 2006), as do octopuses. Like other birds 
and mammals that are thought to have complex cognition and problem solving (Emery & 
Clayton, 2004) but unlike octopuses, keas live fairly long lives and have a protracted and 
protected developmental period. Keas perform a wide variety of play behaviors (Diamond & 
Bond, 2004). They tend to switch from social to object play, and playing is not just exhibited 
by immature animals but throughout the lifespan. O’Hara, Gajdon & Huber (2012) studied 
Keas’s successes and failures in various cognitive tasks and concluded that they have a very 
strong drive to manipulate objects, which sometimes takes precedence over the immediate 
reward provided in the standard experimental paradigm. They also described the keas as 
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having technical (and not social) intelligence (Huber & Gajdon, 2006), which could be a model 
for octopuses as well (see Figure 5).  

Figure 5: The muscular hydrostat design and the relative independence of individual arms allow the animal to 
generate extensive chemo-tactile exploration of its environment. (Photo by Craig Foster) 

  
Although exploration in octopuses has only been studied minimally, there are parallels with 
keas. The primary information about the octopus drive to explore is the extensive lab lore 
about them. Octopuses in aquariums are often given ‘toys’; the AZA (2017) guide for keeping 
E. dofleini specifies that this species should be given objects to manipulate for enrichment. 
Such toys mostly contain a food reward, but keepers often comment that their octopuses 
continue manipulating long after the food has been consumed (Cooke, Tonkins & Mather, in 
press). Grasso (personal communication) has also suggested that the octopuses who did the 
manipulating in his 2008 study seemed to be doing it for the experience and not for the 
ensuing food reward. An example of ‘unmotivated’ behavior is that of an E. dofleini at the 
Seattle Aquarium (named Lucretia McEvil after the cartoon character, the Wicked Witch of 
the North).  
 Octopus tanks commonly have a thin basal plastic sheet, attached to the tank corners, 
with a gravel bed above to give a natural look and to cultivate nitrifying bacteria. One night, 
Lucretia McEvil dug through the gravel, cut the steel cables attaching the plastic to the tank 
corners, pulled it up and tore it into pieces, which were found floating at the water surface 
the next morning (Anderson, personal communication). Octopuses such as Thaumoctopus 
mimicus commonly imitate the appearance of other animals such as flounders and lionfish 
(Norman, Finn & Tregenza, 2001) although no experimental studies have been carried out on 
the effectiveness of such putative mimicry. Perhaps they sometimes extend this imitation to 
conspecifics, thus appearing somewhat social despite their normal technical intelligence. 

Exploration is seldom systematically studied. However, Kuba, Byrne, Meisel & Mather 
(2006a) have studied it, together with habituation, in O. vulgaris. When an item (a miniature 

https://seachangeproject.com/
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plastic crab) is moved outside the octopus tank, it quickly habituates both within and across 
trials. But when food and non-food (Lego blocks) objects are given to the animals, there is a 
shorter latency to contact food items (extrinsic exploration) than non-food ones (intrinsic 
exploration); contacts with food are longer but fewer than those with non-food. The number 
of contacts with food items decreases when animals are satiated (fed two hours earlier) 
compared to hungry (fed 24 hours earlier), so this exploration does not depend on hunger. 
In contrast, there are more but shorter contacts with non-food items, and their number is not 
affected by satiation. Across trials there is a decrease in contact time, but by about the fourth 
to sixth trial, there is sometimes again an increase.  

Mather & Anderson (1999) set up a ‘boring’ laboratory situation to elicit play behavior 
from E. dofleini. Isolated octopuses were given a floating pill bottle. Their initial reaction was 
to grasp it and bring it under the arm web to the mouth. By the third of ten trials, the 
octopuses ignored it, but by the fifth or sixth trial, two individuals began to aim jets of water 
at the bottle, which sent it to the other end of the tank, only to have it returned by the current 
of incoming water — and the octopuses jetted at it again, the marine equivalent of bouncing 
a ball. Based on Burghardt’s (2005) definition, these actions were play. Only some individuals 
played; the octopuses have such different personalities (Mather & Anderson, 1993) that no 
situation elicits the same response from all individuals. This action of emitting a jet of water 
through the funnel was also used across domains (Chiappe & McDonald, 2005). The funnel is 
used by many molluscs as an exit for water circulating through the mantle cavity. The 
cephalopods have modified it for use in jet propulsion (see Alexander, 2003), but the 
octopuses also used water jetting in manipulation tasks, such as cleaning out items or sites 
used as ‘homes’ and repelling scavenging fish (Mather, 1992) or pesky experimenters (Dews, 
1959). Water jets were used at the Seattle Aquarium to short out 24-hour lighting (Anderson, 
personal communication). Water was being used flexibly as a tool (Mather, 2016b), in 
different situations. 

Kuba, Byrne, Meisel & Mather (2006b) investigated playful actions of O. vulgaris using 
their arms. Again with the Lego objects, octopuses performed actions on several levels: 
holding the object with the arms and close to the mouth, moving in the aquarium towing the 
item, pushing it away from the body and returning it closer, and passing it from arm to arm. 
Repetition times were used as a measure of ‘intensity’, and prolonged or repeated actions 
were considered play. Thus 11 of 21 individuals used play-like actions and one used full play. 
The sequence across trials went from exploration through habituation to a returned interest 
and more diverse interactions (see Figure 3.5 in Kuba, Gutnick & Burghardt, 2014) as had 
been reported by Mather & Anderson (1999). Hutt (1966) commented about play in children 
that it moved from “What is this object?” to “What can I do with this object?” The sequence 
seems similar for the octopus (p. 76).  

Play is much more common in young mammals than adults and is ‘functional’ as practice 
for future adaptive behaviours (Burghardt, 2005). Like the keas (Diamond & Bond, 2004), 
subadult octopuses in the Kuba et al. (2006b) study did not show more play-like behavior 
than mature adults. Play might occur when complex animals with a heavy dependence on 
learning have excess resources and a limited environment and are ‘bored’ (see discussion by 
Kuba et al., 2014). Inglis et al. (2001) has pointed out, however, that foraging animals in a 
complex and varying environment make a tradeoff between immediate use of resources and 
information acquisition for future use. They explore more when they are satiated and safe, as 
in the Mather & Anderson (1993) play situation. This tradeoff between present and potential 
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future rewards is also described as ‘latent learning’ and ‘contra-freeloading’. An exploratory 
animal should proactively test the non-rewarded option in a choice situation. Papini & 
Bitterman (1991) noted that the octopuses in their operant test situation could not meet the 
criterion of eighty percent correct responses, as they often explored the unrewarded choice. 
This would also be adaptive for the octopus’s win-switch foraging strategy (Mather, 1991) 
and was probably planned by a central controller to focus beyond the immediate reward.  
 Bryson (2011) has taken such action selection further, suggesting that it provides a 
role for animal consciousness. She also pointed out the resource allocation tradeoff between 
automatic responses and learned ones. Plasticity has an advantage in the changing 
environment of the octopus and the kea, yet it requires attention. More attention is needed if 
there is more uncertainty; octopuses commonly show such attention allocation (see Baars’s, 
1997, spotlight analogy). Faced with a difficult situation, the octopuses often made one or 
several up-and-down head bobs. This allowed the monocular animal to acquire motion 
parallax information about three-dimensional space (Mather, 2008), a common information-
gathering activity across the animal kingdom (Kral, 2003), before choosing an action. This 
does not require sociality as a precursor to cognitive ability in animals. Rather the ‘decisions’ 
that octopuses make while foraging can be described as those of “specializing generalists” 
(Anderson, Wood & Mather, 2008). A population often consumes a wide variety of prey 
species, with some individuals learning special tactics particularly suited for finding one or a 
few species while others use general tactics suitable for a finding wide variety. 
 
2.b. Fear: Everyone is out to get me 
Since octopuses lack external protection such as armor, spines or toxins, they are vulnerable 
to attack by a guild of predatory fishes (see Figure 6). Examining the stomach contents of 212 
species of reef and inshore Caribbean fish species, Randall (1967) found some remains of 
cephalopods in the stomachs of most predatory ones. However, only the moray eels are 
known to consistently hunt octopuses; for example, Mediterranean morays had 5% 
octopuses by weight in their stomachs (Matic-Skoko et al., 2014), purplemouth morays in the 
Caribbean had 12.5%, and spotted snake eels from the same area had 50% (Randall, 1967). 
Many of these fish species are diurnally active but the morays are nocturnal, so an octopus 
would have to be wary at all times of the day and night. Octopuses hid in shelters during times 
of inactivity but the moray body is elongate and tubular, especially configured for snaking 
amongst rocks where a resting octopus might be hiding. 

 What, besides camouflage, might an octopus do to evade these predators? When 
confined in a divided tank with a black triggerfish, an opportunistic diurnal predator, O. 
vulgaris, shifted activity to become more nocturnal, and the timing of its active periods was 
negatively correlated with that of the fish (Meisel, Byrne, Mather & Kuba, 2013). The octopus 
activity pattern produced near the moray was not a mirror image of this. There was no 
correlation of the activity of the two animals: instead the octopuses had longer activity bouts 
in the evening, when the moray might be hunting. This might be a ‘risk allocation’ strategy, 
where changing activity in the face of a casual predator was adaptive avoidance. Changing 
activity towards a specialist predator might only induce a similar shift in its activity; 
moreover, the moray would attack the octopus in its shelter. Faced with predator species like 
these two, an octopus might have concluded that it was not safe any time or anywhere. 
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Figure 6: Octopuses (see the individual in the center) are always in danger from scavenging and predatory fish. 
(Photo by Craig Foster) 
 
Octopuses were not just vulnerable to the guild of predators, particularly fishes, but to 
crustaceans when they were small and to marine mammals when they grew larger. 
Octopuses, as well as other coleoid cephalopods, are cannibalistic (Ibanez & Keyl, 2010). This 
predatory style is probably an adaptive life history strategy. Cephalopods have poor energy 
storage; they are semelparous and so have many small offspring and no parental care after 
hatching. The paralarval octopuses disperse widely in the open ocean, so individuals rarely 
encounter others related to themselves and there is no opportunity for kin selection. Ibanez 
& Keyl (2010) note that the larger octopuses who attack smaller ones also have more smaller 
individuals available in their ‘window’ of smaller sized prey. Predatory opportunities could 
be density-dependent, but the distribution of octopuses may be clumped for the availability 
of shelter. 

Observers rarely see predation events in the field. Moribund octopuses could have been 
available as food for scavenging conspecifics but there have been a few observations of active 
cannibalism (see Hanlon & Forsythe, 2007, and Huffard & Bartick, 2015, for O. cyanea; 
Hernandez et al., 2014, for O. vulgaris). Death seems to be due to suffocation from 
compression by the strong arms. Cannibalism happens in several species in the laboratory 
when there is not enough opportunity to escape but octopuses also hunt conspecifics in the 
field. Female octopuses actively resist mating attempts by males, so passage of the 
spermatophore at ‘arm’s length’ from outside the den of a female may be less risky than close 
contact. Hanlon & Forsythe (2007) saw a large female attack and eat a smaller male after 
several copulations, so this activity is by no means safe. For a small male octopus, there must 
be conflict between the drive to find a female and reproduce and the risk of being killed in 
the process. The overall chance of reaching adulthood in octopuses ranges from one in 50 or 

https://seachangeproject.com/
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so for the large-egged species to one in thousands for the small-egged ones. The intelligent 
octopus must hence always be on guard, all the time and against everyone. 

It is difficult for highly social humans to imagine the totally solitary life of an octopus. 
There is no support from group members, no sheltered juvenile period, no comforting touch 
contact and no communication about threat from other group members. An octopus succeeds 
in reaching maturity and breeding, or more often fails, based only on its own actions and, 
most of all, on its intelligence.  
 
2.c. Flexibility: If at first you don’t succeed, try another way 
While the acquisition and storage of information is clearly vital to animals, how they choose 
to use it is also very important. Here we must consider both between- and within-individual 
variations. Across individuals, personality may allow octopuses to adapt to the micro-
environment they choose. There are strong personality differences across individuals faced 
with common situations (Mather & Anderson, 1993). For example, when O. rubescens were 
touched on the edge of the mantle with a bristly test-tube brush, reactions varied from jetting 
away from the brush and ejecting ink to reaching out with a couple of arms and attempting 
to pull the brush from the experimenter’s hand.  Dews (1959) found an extreme example of 
this variation in O. vulgaris when he was trying to train three octopuses in operant behavior, 
pressing a lever at the side of their tank for a food reward. He reported that two of the three 
octopuses pressed the lever gently and learned the task quickly. The third, Charles, pulled on 
the lever with great force and eventually broke it. He also pulled down a light suspended 
above the tank which marked the location of the reward. Between these activities, he aimed 
jets of water at the experimenter. Since the octopuses were wild-caught, there is no 
explanation for what might have preceded this suite of behaviors. However, in the field, 
personality variation of O. cyanea has been observed to contribute to their choice of prey 
(Scheel, Leite, Langford & Mather, 2016). 

Sequences of actions in invertebrates are often assumed to be a fixed set of subroutines, 
with feedback from the results of one action leading inevitably to the next (see Japyassu & 
Laland, 2017, for a discussion). Such sequences are rarely seen in cephalopods, but one such 
set of actions was investigated during sand burying by the cuttlefish Sepia (Mather, 1986).  
The sequence was adjusted to subtle changes in the environment such as sand depth and 
texture. The freedom of such actions from stimulus-response pairing in domain-specific 
responses indicates control by a mind (Chiappe & McDonald, 2005); the use of water as a tool 
in different situations is an instance of such flexibility. Cognitive modules might have evolved 
to handle specific inputs and generate specialized solutions for them (Vitti, 2013); it is often 
suggested that human language is such a module. Domain generality is the opposite of 
modularity; it allows animals to apply old solutions to new problems or to apply several 
solutions to a continuing problem. Chiappe & MacDonald (2010) and Japyassu & Laland 
(2017) argue that animals are impelled toward this domain generality by living in uncertain 
and often novel environments, and Shumway (2008) suggests that such environments result 
in larger brains (see Figure 7). 
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Figure 7:  Examples of actions by octopuses that require the guidance of a mind, including flexibility of actions, 
causal reasoning, prospection for future actions and imagination of a possible situation (see Emery & Clayton, 
2004). 

 
Octopus adaptability has been used for problem solving across domains. For example, 
octopuses removed a lid of a glass jar to obtain a crab confined inside, but Fiorito, von Planta 
and Scotto (1990) found that they did not learn (i.e., did not have a shorter latency to perform 
the task). Anderson & Mather (2010) added an extra cue, chemical traces on the outside of 
the jar, which did produce a decrease in latency. Because the jar was commonly taken under 
the arm web and out of sight, the octopus did not remember the situation without continuing 
cueing, but could use the two cues sequentially. There was no stereotyped behavior in this 
novel situation; one individual tested by the author simply wrapped one arm around the edge 
of the lid and contracted it to unscrew the lid; the other used the bases of several arms and 
moved them laterally. When Mather & Anderson (1999) observed octopuses playing, they 
were moving a pill bottle with jets of water, but when Kuba et al. (2006b) saw octopuses 
engaging in play–like behavior with Lego blocks, they were moving them by extending their 

EXAMPLES SITUATION 

Flexibility 

Activity change in response to generalist predators Facultative predation avoidance 

Skin background matching (pattern, texture, color) Use of immediate visual cues 

Arm use for walking by movement direction Flexible choice by goal direction 

Home construction by modification Learned kinesthetic feedback use 

Causal Reasoning 

Avoidance of stinging sea anemone Feedback from negative sting 

Passing Cloud skin display Invoking startle action in prey 

Location of hole drilling on clam shells Feedback from previous attempts 

Prospection 

Head bob to get motion parallex information Response to ambiguous situation 

Coconut carrying to a location with no shelter Plan for need for future shelter 

Return to home after displacement  Allocentric view, cognitive map 

Imagination 

Arm/tentacle tip wiggle Plan for prey luring 

“Pain” behavior Mitigating body damage 

Push-pull item manipulation  Different action, same result 

Play by water jet or arms Boredom relief, domain general 
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arms and passing an item from arm to arm. As far as choice of action is concerned, octopuses 
seem to use the principle: ‘whatever works’. 
 Using whatever action is effective can result in sequential problem solving. Capturing 

a clam in its shell does not result in an immediate food reward because of what Anderson & 

Mather (2007) called the ‘packaging problem’. Initially, octopuses tried to use the 

energetically demanding and short-duration strategy of pulling the valves apart, but if they 

did not succeed (Wodinsky, 1969), they used other strategies (McQuaid, 1994). The initial 

pull may also be a short evaluative one, with that initial resistance cuing the octopus to switch 

strategies. Octopuses can then drill a small hole in the shell with their salivary papilla (Nixon 

& Macconachie, 1988) and send a posterior salivary gland toxin through the hole, weakening 

the clam’s muscles. Alternatively, they can chip a small piece off the margin of the valve with 

their cartilaginous beak, which also provides an area for inserting the toxin (Anderson & 

Mather, 2007).  

 These three techniques require different orientations of the clam to the octopus’s 

mouth, carried out under the arm web and thus not available to vision. For pulling, the clam 

is positioned with the hinge towards the octopus’s mouth; for drilling, the flat area of one 

valve of the clam is placed near the mouth and for chipping, the anterior or posterior margin 

of the clam is angled toward the beak/mouth area. Interestingly, the drilled hole is either 

positioned over the clam adductor muscles or over its heart, and drilling locations must have 

been learned, but quickly (Merlino, 2013). The octopuses consumed a variety of prey species, 

and the effective hole position is learned for each. Blustein & Anderson (2016) describe the 

specialized posterior-lateral location necessary for drilling holes over the retractor muscle of 

cowries. The effort involved in drilling influences prey choice, too. With a choice between 

fragile-shelled mussels that need no drilling or chipping and two stronger clams that do, E. 

dofleini more often chooses the mussels. However, if the bivalves are already opened first, the 

octopuses nearly ignore the mussels (Anderson & Mather, 2007). The energy tradeoff 

between actions and food return is evaluated not only in the choice of what penetration 

strategy to use but also the choice of prey species, maximizing energy gain over expenditure. 

Octopuses also use sequential problem solving in a more perilous situation: predator 
threat. The primary protection from most predators is to hide: O. insularis (thought at the 
time to be vulgaris) only came out to hunt for 13% of the daytime (Mather, 1988). The 
octopus’s excellent skin pattern camouflage (Messenger, 2001), sometimes accompanied by 
Concealing postures (Huffard, 2006), was a primary protection when they hunted. If 
octopuses were approached more closely by a predator, they changed to a wide spread of 
arms and web and dark around the eyes, producing a startle pattern (Mather et al., 2014, 
Figure 6.4). If this action failed to repel the predator, the octopuses could make a jet-propelled 
departure, often changing appearance sequentially, which breaks the continuity of the 
predator’s ‘search image’ (Bond, 2007). Jetting could be accompanied by the release of ink, 
which both obscured the predator’s vision and blocked its chemoreception (Wood et al., 
2010). In the large Octopus cyanea, concealment may be more a matter of variation than 
background matching (Hanlon, Forsythe & Joneschild, 1999). Foraging animals of this species 
made many changes in their appearance, three per minute; these patterns were only 
camouflaging about half the time. With approximately 11 patterns, none could be easily 
anticipated for prey recognition. This proactive strategy of variation might mean that a 
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predator searching visually would not be able to match any one appearance with its stored 
search image (Bond, 2007). During a prolonged chase, the octopuses intersperse these 
changes with ink and a jet escape, further confusing the potential predator. Changing was 
protection. 

 
3. Conclusion 

 
Although we hold up learning as the hallmark of intelligence and mental competence, many 
types of learning are very simple and widespread throughout the animal kingdom. Deaner 
(2006) has pointed out for primates and Zarrella et al. (2016) for octopuses that the number 
of situations in which animals can learn may be a more appropriate measure of their 
intelligence. Cephalopods acquire many new input-response linkages in demanding 
experimental situations such as those requiring episodic memory (Jozet-Alves et al., 2014), 
as well as ecologically valid ones such as navigating through the environment (Mather, 
1991a; Jozet-Alves et al., 2014). Octopuses are also excellent domain general learners, with 
the flexibility to use the same actions in different situations (Vitti, 2013) or different actions 
in the same situation (Mather, 2016b). Octopuses can change their situation-action pairings 
too, trying a different response when an old one has failed, which is particularly vital when a 
predator threatens (Hanlon et al., 1999; Mather et al., 2014). 

The ability to flexibly acquire information through learning, and to use it in a domain 
general manner in constructs such as a cognitive map, provides potential evidence for a mind. 
The capacity to acquire proactive information is even more compelling. Focusing on learning, 
theorists had seen exploration as ‘latent learning’ or ‘contra-freeloading’. Inglis et al. (2001) 
recognized exploration as an adaptive tradeoff between the immediate use of information 
and the acquisition of information for future use; octopuses are specialists in this. They use 
the head bob to generate motion parallax to acquire three-dimensional information for their 
monocular visual system. They generate a Passing Cloud skin display to startle a motionless 
prey after a capture attempt has failed (Mather & Mather, 2004). They can acquire 
information from tactile exploration and then generalize it to play and the manipulation of 
objects. I suggest that such capacities need to be directed by a mind. Although the sensory 
Umwelt and the decentralized control systems of the octopus do not generate the same kind 
of mind as in vertebrates, the octopus nevertheless has one. 
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